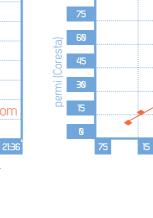


AN OPPORTUNITY TO OPTIMIZE refining, retention, broke addition, vacuum levels and any of the machine variables that make paper, not just good paper, but the best it can be.

AN OPPORTUNITY TO IMPROVE AND MAINTAIN the stability of the structure of your paper — less broke, lower operation costs and higher quality paper for all YOUR customers.


- Production increase of a liquid packaging board machine from 576 ton/day up to 648 ton/day.
- Speed increase of a cigarette paper machine from 300 m/min to 400 m/min (25 %).
- Much faster grade changes in production of nonwovens.
- Energy savings up to 10 kWh/ton with better control of refining.

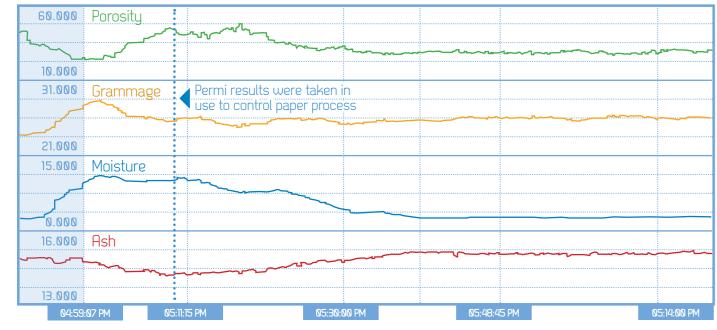
EXCELLENT CORRELATION WITH PROCESS CONDITIONS SUCH AS REFINING. BROKE ADDITION, RETENTION, ETC., MAKING IT EASY TO OPTIMIZE PAPER MACHINE RUNNABILITY.

INCREASED POROSITY (decrease in Gurley seconds) due to a small addition of uncoated broke. 19 19 17 15 Porosity 18 → 10 s 19 11 Uncoated broke from fibres 7 → 10% 13:12 14:24 15:36 16:48 18:00 19:12 20:24 21:36

Small changes in the broke levels can have a big effect on paper porosity (increasing or decreasing). In this case addition of uncoated broke has increased porosity.

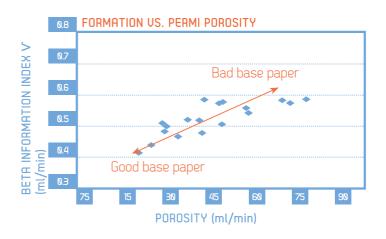
NON-WOVENS (GLASS FIBRE) 5000 4000 R² = 0,98122

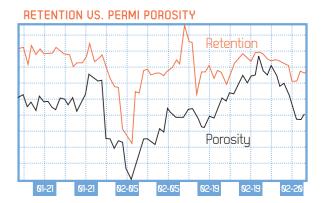
BASE PAPER FOR LCW 365 355 345 325 325 325 325 335 345 355 365 LAB BENTSEN (ml/min)

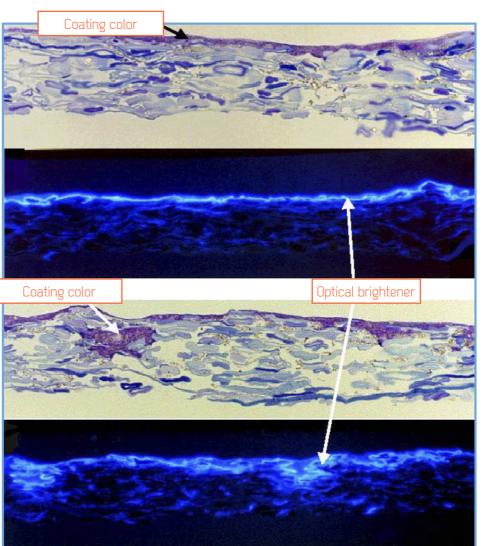

SIMPLE LINEAR CALIBRATION

 $R^2 = 0.98122$

LABORATORY (CORESTA)


Cicarette Paper


CONTROL REFINING MANUALLY OR AUTOMATICALLY


RESULTS IN => STABLE POROSITY => STABLE STRUCTURE OF PAPER WEB!

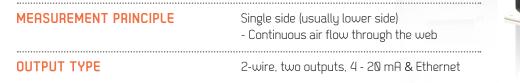
EXCELLENT CORRELATION TO FORMATION. RETENTION AND COATING QUALITY

Generally the porosity is low when the formation is good. If formation gets worse => porosity would increase.

DENSE SHEET

 small penetration of coating color and good coating coverage and gloss.

POROUS SHEET


 deep penetration of coating color and poor coating coverage and gloss. Misting problems in film coating.

Forsström et al. TAPPI Coating Conference, 2002 http://www.kcl.fi/news/link12004/link12004s4.html

CORRECT PERMI POROSITY => GOOD QUALITY OF BASE PAPERS => GOOD QUALITY OF COATED PAPERS

SPECIFICATIONS

OPERATING TEMPERATURE

Sensing head130 °C maxPneumatic Box70 °C maxRemote Control box50 °C max

DIMENSIONS

Sensing head $700 \times 180 \times 180 \text{ mm.}$ 18 kgPneumatic Box $500 \times 295 \times 200 \text{ mm.}$ 18 kgRemote Control box $395 \times 295 \times 260 \text{ mm.}$ 10 kg

MEASUREMENT RANGES

 1. Gurley
 1 - 6 000 sec

 2. Bendtsen
 10 - 10 000 ml/min

 3. Coresta
 1 - 10 000 Cu

4. Any other method

Basis weight 10 - 400 g/m2 Machine speed: 0 - 3000 m/min

EXTERNAL CONNECTIONS

Power supply: 100 - 240 VAC. 50/60 Hz or 24 VDC 2A $\text{Air supply:} \qquad \qquad 6 - 10 \text{ bar.} 200 \text{ l/min. clean and dry air } (5 \mu\text{m})$

Instruments signals: 2 Analog outputs: 4-20 mA 2 Binary Inputs: Break Input

Reel turn up

Ethernet CAT-6 to PC (Optional)

.....

ENCLOSURE CLASS IP 54

PC SOFTWARE (OPTIONAL) PermiProcessView made by ACA Systems

MEASUREMENT SAMPLE TIME 2 ms

SPECIAL FEATURES Automatic self-cleaning cycle (adjustable time)

MAINTENANCE Filters to be replaced every 4 - 8 weeks

CALIBRATION Single calibration curve per measurement

system

